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The goal of the colliding-beam storage ring designer and 

operator is optimization of luminosity, which is defined as the 

number of elementary-particle events of unit cross-section that 

take place at a single beam-beam encounter point, per unit time. 

At the newest electron-positron storage rings - CESR, PEP, and 

PETRA - the luminosities observed have sofar been at best about an 

order of magnitude below the design values' of -lO32 cma2 
-1 set . This means that high energy physics experiments, so 

dependent on good statistics for analyzing rare processes, must run 

much longer than had been originally expected for acceptable 

results. 

In the first two sections of this pedagogical report, I shall 

discuss two assumptions on which these design expectations were 

based, and specific ways in which subsequent operating experience 

has shown these assumptions to be naive. One assumption led to an 

overestimate of luminosity at a given current, while the other led 

to an overestimate of the largest current that could be stored. (I 

shall consider in detail only phenomena related directly to beam- 

beam collisions; single-beam effects will be mentioned only in 

passing.) In the third and final section I shall describe some 

recent theoretical attempts to go beyond these assumptions. 

I have chosen to concentrate here exclusively on e+e- 

machines, because there is published data on high-energy e+e- 

storage from at least seven separate laboratories, collected over a 

period of, by now, about twenty years. Ry contrast, there is as 

yet no significant data on Fp colliders; and all the pp data comes 
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from only.one facility - the ISR - whose operating conditions 

differ from those of electron-positron rings. 

I. ROW CONVENTIONAL DESIGN PROCEDURE OVERESTIMATES 

LUMINOSITY AT A GIVEN CURRENT 

Mathematically, luminosity is defined by the formula 

where f is the revolution frequency of a stored particle (i.e., 

speed of light divided by circumference of ring); e is the 

positron charge; B is the number of bunches per beam: I1 and I2 
are the two beam currents; Al and A2 are the two beam areas, 

transverse to the collision axis; and A is the transverse area in 

which the two beams overlap upon intersection. (When the beam 

particles are not distributed uniformally in the transverse plane, 

these A's are effective areas, defined by appropriately weighted 

averages. See ref. 35.) 

It has been standard practice, when computing anticipated 

luminosity, to ignore the effect that one beam has on the size and 

shape of the other. 2 This is the non-perturbation assumption. It 

means, in particular, that Al, A2 and A are all equal and 

independent of the number of particles in the storage ring. For 

equal currents (11=12=1) we may then write 

L = 12/e2BfA . (2) 

In particular, luminosity in this configuration should increase 
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with current as (constant) x 12, where the proportionality 

constant is computable from first principles. 

It turns out that this is not consistent with experiment: 

Direct measurements of luminosity show that L always grows much 

more slowly than (constant) x1‘ at large current. Direct 

observations of beam size show that the cross-sectional area of at 

least one of two colliding beams always increases significantly 

with I at large current. (When both beams blow up equally, 

equation (2) is still valid, but one may no longer take A to be 

independent of I.) These trends are illustrated in figures l-12, 

to which we now turn. 

(It should be noted that by unperturbed A I mean the single- 

beam cross-sectional area as computed from the beta-functions and 

emittances of the real storage ring. Because of single-beam 

instabilities, 33 (among other things), these B's may have to be 

held at larger values than anticipated by the designers. Thus one 

should really distinguish two principal reasons for low 

luminosity, relative to design: colliding-beam effects, which 

lower the luminosity vs. current curve relative to some 

quadratic; and single-beam beta-function limitations, which lower 

the normalization of the reference quadratic itself.) 

Figures l-5 show data on luminosity as a function of current, 

from several laboratories. Figure 1 represents data taken at 

SPEAR. 3 The data point with the largest current (about 8mA) falls 

short of the quadratic curve (extrapolated from small current) by 

a factor of about three. Figure 2 represents data taken at CESR. 4 
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For b* (what we have been calling by*) = 29 cm, the data point with 

the largest current falls short of the corresponding quadratic 

extrapolation by a factor of about 1.6. Figure 3 shows data taken 

at PETRA. 5 For these graphs, PETRA was operated with two bunches 

per beam. (The SPEAR and CESR data6 described above were taken with 

one bunch per beam.) In each graph, the abscissa corresponds to the 

single-beam current per bunch, and the ordinate corresponds to the 

quotient of luminosity and the square of the single-bunch current. 
2 If L were proportional to I , then the curves in Fig. 3 would be 

straight horizontal lines. Instead, the 15.3 GeV curve is lower at 

5 mA, by a factor of about two, than it is at very small current. 

The effect is clearly much worse at the lower energy of 11 GeV. 

Figures 4 and 5 represent data taken at PEP, with two different sets 

of magnetic lattice parameters. The two curves in each figure 

correspond to operation with one and three bunches per beam. In 

Fig. 4, the one-bunch curve is quadratic at small current, but 

falls below the extrapolation of the quadratic curve by a factor of 

about two at the largest current shown; in the same figure, the 

curve interpolated between the three-bunch data points grows more 

slowly than quadratic (more like I l-6) even at small current. At 

the highest current for which data with both bunch numbers is 

shown, the three-bunch curve exceeds the two-bunch curve by a 

factor of two, not the naively expected three. (Three would arise 

in formula (2) from combining a factor of nine, corresponding to 

the ratio of 1' in the two cases, with a factor of one-third, 

corresponding to the ratio of the two values of B --I.) In Fig. 5, 
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the single-bunch curve at the largest current falls short of the 

quadratic extrapolation from small current by a factor of about 

5.4; the ratio of three-bunch to single-bunch luminosity falls to 

2.2 at the largest current for which the comparison can be made. 

(A number of workers have attempted to fit the high-current 

luminosity of different high-energy e+e- storage rings to a single 

phenomenological scaling law. See references 3 and 34 for 

details.) 

Figures 6-12 show data on the increase of transverse beam size 

with current. Let me first make a few comments before discussing 

this data in detail. 

When the currents in two colliding beams are not equal ("weak- 

strong" case), the more tenuous ("weak'*) beam is always the one to 

be more enlarged. When the two currents are equal ("strong-strong" 

case) there ,is no general rule for predicting which beam (if 

either) will expand more than the other, and a perturbation (for 

example momentary excitation at a betatron frequency) can turn the 

thicker beam thinner and vice versa. At SPEAR' this kind of 

interchange can be induced in a gradual and controlled manner by 

slowly varying the phases between RF cavities. In particular, for 

any energy there is a setting of the relative phases for which the 

two beams are blown up equally, and this setting turns out to 

maximize luminosity. (There are indications that the same thing 

might be possible at PEP.6) Unless otherwise noted, all the SPEAR 

data discussed in this report were obtained with the beams 

deliberately matched in this way. (Data from other machines may 
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also have been taken under conditions of equal blowup, but only at 

SPEAR is this situation claimed to be a result of conscious 

manipulation.) 

This suggests the first of a number of exercises that will be 

proposed in the course of this paper. 

Problem 1 

How should one place two identical RF cavities in a given 

storage ring so that any variation of their relative phase will not 

affect the location of the point at which the electron and positron 

synchronous design orbits cross? 

While you're at it, a second exercise: 

Problem 2 

Even without colliding-beam effects, the shape of an electron 

bunch in a storage ring is not an entirely trivial matter. For 

example: A common practice is the deliberate rotation of a number 

of quadrupole magnets in order to couple horizontal and vertical 

betatron motion and thus enhance the vertical extent of the beam. 

(Even with such enhancement, electron and positron beams are much 

wider than they are high.) This linear xy coupling also has the 

effect of tilting transverse profiles of the bunches. Look up the 

theory of equilibrium beam distributions in linearly focused 

storage rings (Ref. 8), and then use the figures in Table I to 

estimate the magnitude of the transverse tilt (it should be small) 
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at an interaction point in PEP. Show that counter-rotating 

electron and positron bunches tilt in the same sense (i.e., both 

inclined toward the same general area above or below the center of 

the ring), when they pass the same azimuth. If they did not tilt 

in the same sense, then the two beams would not overlap totally at 

the interaction point even at low currents, and the incompleteness 

of this overlap would be one reason for low luminosity. 

We now return to experimental data. 

Figures 6-11 are obtained from observations of the synchrotron 

light radiated by beam particles. The radiation due to an ultra- 

relativistic charged particle is (to a good approximation) emitted 

tangent to the particle's path, so that (when the detector is 

sensitive enough) a picture of this light can be interpreted as a 

graph of the transverse beam distribution, with light intensity 

serving as a measure of particle density. Such radiation profiles 

provide the clearest indications (essentially self-evident) of the 

extent and shape of beam enlargement. 

Figure 6 shows six television photographs of electron and 

positron synchrotron images taken under various conditions at 

SPEAR.' (Current and energy are not specified.) The indication 

"with flip-flop effect" means tha.t the RF relative phases have not 

been adjusted so as to deliberately match the e+ and e- profiles. 

"Flip-flop balanced" means that such an adjustment has been made. 

These photos are not fine enough to reveal details of light 

intensity, for which one is referred to Fig. 7, depicting the 
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results of photometric measurements 9 of bunch dimensions at one and 

four mA of current per colliding beam. The number under each peak 

in Fig. 7 is its full width at half-maximum, in millimeters. 

The T.V. photographs shown in Fig. 8 were taken at PETRA" 

(the beam energy is not indicated, but is probably around 7 GeV), as 

was the data represented in the graph of bunch heights vs. time5 

shown here as Fig. 9. Figure 10, similar to Fig. 7, shows 

synchrotron light profiles measured at ADONE. 12 The energy is not 

indicated, but is in the vicinity of 1 GeV. ("r" and "v" stand for 

"radial" and "vertical", equivalent to "x" and "y" in Fig. 7.) 

Figure 11 shows strong and weak beam profiles for various values of - 
vertical tune, as observed by a television monitor at DCI.13 

(Energy is once again around 1 GeV; current not specified.) Similar 

blow-up effects have been described in reports from CESR4 and from 

PEP.6 

The results of some less direct SPEAR measurements of the 

growth of beam height with current are shown in Fig. 12. (As is 

clear upon inspection of figures 6-11, beam width varies very 

little, if at all, with current.) I introduce this figure more to 

illustrate the range of experimental and interpretative techniques 

that have been applied to this phenomenon, than to add to the evi- 

dence of beam blow-up already indicated in the preceeding six 

figures. 

The two curves in Fig. 12 were obtained in two entirely 

different types of measurements, so there is nothing a priori 

problematical in their disagreement. 
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The black dots in Fig. 12 represent a reassembly of data that 

we've already examined, rather than a direct and independent 

measurement of beam size. They were obtained by inserting 

luminosity data (like that shown in Fig. 1) and the unperturbed 

value of c X * (the rms bunch width) into the right-hand side of the 

following formula for c y* (the rms beam height) 

* 

aY = 12/La:e2Bf . (3) 

Equation (3) is derived from (2) by writing the effective area A as 
* * 

4na, a Y ' 
where the assumption of a gaussian distribution accounts 

for the exact number 4n as a correction for the presence of par- 

ticles beyond the rms distances. 

The white dots in Fig. 12 represent calculations based on 

beam-lifetime measurements, which are independent of luminosity 

measurements, and are more directly related to beam size, being 

immediately sensitive to the flux of particles at large y. The 

calculations were based on the following formula (derived again 

assuming a gaussian bunch distribution) 2 

2 
(4) 

Equation (4) expresses the beam lifetime T in terms of: the 

vertical betatron damping time T 
6 

; the half-height, h, of the beam 

pipe at the location of a scraper (assuming a pipe much wider than 

high); and the rms beam height, cy, at that point. The data for T 
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at different beam currents is substituted into the left-hand-side 

of (4), the known values of T 
8 

and h are substituted into the right- 

hand side, and the resulting equation is solved for 
aY to produce 

the open dots in Fig. 12. 

(Note that the values of (,,) 2 shown in Fig. 6 are normalized 

to B Y' 
According to the theory of quantum (photon) noise fluc- 

tuations, 
aY and ax are proportional, as functions of storage-ring 

azimuth, to my and JB;; (at least for vanishing dispersion). Thus, 

although the open and closed dots correspond to data taken at two 

different points (the interaction point and the scraper location), 

one may interpret the figure as if all the data was extracted at a 

single location.) 

One should be aware that both curves are intrinsically 

inaccurate, in that both presuppose gaussian charge distributions, 

while other, independent experiments have shown nongaussian 

behavior at large distances from the bunch center. 9,lO 

II. HOW CONVENTIONAL DESIGN PROCEDURE OVERESTIMATES MAXIMUM 

ACHIEVABLE CURRENT 

To explain the method by which maximum storable colliding 

currents have conventionally been predicted, it is first necessary 

to introduce the concept of "beam-beam linear tuneshifts," which 

are measures of the effect that the whole of one beam has on a 

single particle of the other beam. (Thus, as there are two beams, 

there are, strictly speaking, two sets of beam-beam tuneshifts.) 
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The conventional prediction of maximum current is based on a 

picture of instability that is most immediately concerned with 

maximum achievable tuneshifts. This point of view is becoming 

obsolete today, but has in the past enjoyed considerable influence, 

despite a very poor predictive record. 

The tuneshift is a notion most naturally associated with beams 

whose distributions have reached a steady state, and whose bunches 

are not significantly tilted relative to the usual comoving axes. 

Because of the steady state , a single particle in one beam sees the 

perturbation due to the whole of the opposing beam as periodic in 

the usual path length parameter s. (The period is the path length 

between interaction points, which is the same as the circumference 

of the ring divided by twice the number (B) of identical bunches in 

a beam.) Because the tilt angles are negligible, the linear part of 

this perturbation does not couple x and y; so if xy coupling in the 

ring magnets is also neglected, then the motion of a test particle 

around the magnetic lattice and. through the perturbation is des- 

cribed in linear approximation by two uncoupled linear 2nd order 

ordinary differential equations with periodic coefficients. Such a 

system can be described, as usual, in terms of (horizontal and 

vertical) tunes per period. The differences, s, and 5 
Yf 

between 

these tunes and the unperturbed ones are the horizontal and 

vertical linear beam-beam tune-shifts (per bunch per collision - 

the total tuneshifts would be these numbers times 2B) due to the 

beam in question. 

Twenty years ago, it was expected that colliding-beam per- 

formance would be limited primarily by linear instability,'l so 
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that the maximum achievable tuneshift (x or y) would be the 

smallest number that would give an integer or half-integer when 

added to the corresponding unperturbed tune. Storage rings before 

SPEAR encountered instabilities at tuneshifts much smaller than 

those predicted by the linear theory. 15 The obvious next guess - 

that nonlinear resonances are responsible for upper limits on the 

c's - never developed into a body of unambiguous criteria. 

Instead, the idea that the maximum 5's could be easily computed for 

each machine from first principles was supplanted by the idea that 

- for whatever reason - all e+e- storage rings are characterized by 

the same maximum achievable 
sy- 

(As will be explained later, rules 

of thumb for cx 
- 

are not commonly employed in estimates of the maxi- 

mum luminosity of + - e e machines.) Accordingly, the designers of 

SPEAR based their maximum current predictions on the maximum 

vertical tuneshift - .025 - reached at any of the earlier e+e- 
16 colliders. SPEAR IIsubsequently performed up to 5, -.06 (although 

not at all energies - see Fig. 13) so the designers of CESR,l' 

PEP,l* and PETRA5 based their optimum performance predictions on 

the supposition that .06 would be the largest 
% 

achievable. At 

present, none of these machines have exceeded 5 
Y - .03. 

In view of this record, how one should predict (short of 

large-scale computer simulation) the limiting parameters of the 

next generation of storage rings is not clear. 

We now derive expressions for tuneshifts in terms of beam 

current and beam dimensions, so that we can see explicitly how an 

overestimate of maximum vertical tuneshift contributes to an 
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overestimate of maximum current and luminosity. For convenience, 

.we shall assume that the beams are Gaussian. The first two steps in 

the derivation are proposed as problem 3. 

Problem 3 

a) Consider a collision between a positron and an electron, 

initially very far apart, with initial velocities ; and -G, and 

initial impact parameter I; (perpendicular to ?, pointing from 

positron to electron). Show that in the limit of very high (rela- 

tivistic) energy (i.e. v _ c), the total change (accumulated from 

very large negative to very large positive times) in electron 

momentum due to this collision is 

Ap/-i; - 
( ! 

2e2 

CP 
(5) 

(A; = 0 in the same approximation.) 

b) Now replace the positron by a bunch of N positrons whose density 

function in the spatial plane perpendicular to ; is a Gaussian of 

rms widths ax and c 
Y' Show that when (5) is integrated over the 

entire positron distribution (beware of singular integrals), the 

result is, in linear approximation, 

AP, - -2e2xN 

C%b x+q 

APy - -2e'yN 

cay(ax+ay)' 

(6) 
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where x and y are the horizontal and vertical transverse displace- 

ments of the electron relative to the positron bunch center. 

Formula (6) is applicable to the typical collision in a 

storage ring when (as is usually the case) the bunch lengths (along 

I?) are small compared to the scale on which & and 6y vary in the 

interaction region. In such cases, one commonly regards the 

collisions between single particles and whole bunches as 

instantaneous; so that one may relate the momentum changes to the 

more conventional variab~les of beam dynamics according to 

APx = IllCyAX' (and similarly for y), where m is the electron mass 

and mc 2 Y its energy; and one may replace the width and height, ax 

and ayf by ax 
* 

and 
* 

aY ' 
their values at the point where the e+ and 

e- synchronous design orbits cross. In toto, for the linear 

approximation 

X 

(7) 

where r = 
0 

e2/mc2 = 2.82 x lo-l3 cm. Of course the words 

'electron" and "positron" in the foregoing may be freely 

interchanged. 
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Before we continue, you might want, as proposed below in 

problems 4 and 5, to estimate a couple of orders of magnitude that 

might give you a feel for the scale of the beam-beam interaction. 

Problem 4 

How does the typical change in x' or y' due to a beam-beam 

encounter in PEP compare with the components of transverse velocity 

of the typical stored electron? To estimate the typical changes in 

x' and y', use formula (7): y and N can be computed from Table I 

and equation (12); x and ax* may be estimated from the table by 

setting x - ax* - unperturbed ax 
* 

, and similarly for y and a. 
* 

Y * 
To 

estimate the typical velocity components, use 

\I <(Y’) 2 >* -J <y2 ,*/By* . ay* 1 /By* 
(8) 

I unperturbed 
. 

(and similarly for x), suggested (at least when S ' can be 

neglected) by the form 

WY2 +B 
BY 

y (Y’ - -y Y12, 

Y 
(9) 

of the Courant-Snyder invariant. 19 

Problem 5 

How does the electromagnetic energy radiated as a result of 

the abrupt kick (7) compare with the energy lost to synchrotron 

radiation during a single turn through the storage ring? To 

estimate the energy radiated because of the collision, use, for 
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example, formulae in Ref. 20, assuming that the time elapsed 

during the kick is of the order of the unperturbed bunch length 

divided by the speed of light. (For consequences of this kind of 

radiation-known as "beam-strahlung"-see reference 36.) To 

estimate the energy radiated during one machine revolution, 2 use 

the approximation (energy radiated per turn) sE/ref, where T is e 
the energy damping time. 

We continue toward the tuneshifts: 

Following (7), transit of an electron (in linear approxi- 

mation) through one machine period can be represented by the 

transformation 

\ ,\ 

Y cos 2* 

i,( Y' -7 si: 2"+ 1 

B 
Y 

1:: Y~~"JC~*~j+~*) :J[J (10) 

(and similarly for x). The first matrix factor corresponds 

to linear transport between interaction points ( FL 
is the unper- 

turbed tune per period; the total unperturbed tune is vY = Z3uy), 

and the second factor corresponds, according to (7), to transport 

through an interaction region. The last step in the calculation of 

the c's proceeds from (lo), and is proposed as problem 6: 

Problem 6 

Show that the eigenvalues of the transformation in (10) are 

exp 2ni (% + $1, where 
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cos 21f(py + 5,) = cos 2nuy - ‘: ) YOY *(ay*+ax*) sin 2np 

Y' 

For small current (i.e., small N), this reduces to 

* 

5, - 
roN6 Y 

2nya Y 
*lay* + a,*) (12) 

and similarly for x. 

Equation (12) (together with N = I/eBf and 
"Y *CC a x*I which 

implies that ay*(cy* + a,*)-0 y*ux* = A/4x) leads directly to 

(13) 

which is the basis for the standard prediction of maximum current 

(and, through (2), maximum luminosity). The maximum current for 

each of CESR, PEP, and PETRA was predicted by substituting 

Cy max = -06, and the unperturbed A, into the right-hand-side of 

(13). 

How accurate are these predictions? As an example, let us 

compare prediction with outcome for three-bunch operation of PEP, 

according to the data shown in Fig. 4. Prediction gives Imax _ 29 

mA, when 5, max = .06 and A unpert . .0029 cm2 are substituted into 

(13) for B = 3 (Aunpert is determined by comparing the quadratic 

part of the one-bunch curve with formula (2)), while the highest 

three-bunch current shown in Fig. 4 is 3 x 5 = 15 mA, i.e. a 

shortfall of about 50% (actually 50% over and above single-beam 

effects, as explained earlier). 



In accordance w ith (13) (despite misgivings one might have 

about our initial gaussian approximation) we can identify the one- 

half with a product of one-third from the ratio of 5, max observed 

at PEP 6 to that predicted, and three-halves from the ratio of A 

observed (at maximum current) to that predicted. (At least for a 

rough calculation like this, the observed area can be determined 

from the three-bunch curve in Fig. 4 by applying formula (2), since 

for this data the two beams in PEP turned out to be about equally 

enlarged.33) According to (2), a maximum current 50% of that 

predicted, and a cross-sectional area 150% of that predicted, 

together mean an 83% shortfall in luminosity (not counting single- 

beam effects). 

19- 

At this point a comment on experimental methodology is in 

order: Colliding beam facilities do not all employ the same 

criterion in determining the current beyond which the machine 

should not be operated. At SPEAR,'l PEP,21 and PETRA,5 one con- 

siders the threshold to be crossed when background is excessive in 

high-energy-physics experimental detectors. The rise in background 

near maximum current is sharp enough that appreciable changes in 

the cutoff on background would result in only small changes in the 

measured maximum beam current. 21 A number of reports 11,12,13 from 

other labs have mentioned beam lifetime as the quantity used to 

operationally define the threshold. 

The skeptical reader may wonder if there is in fact much 

difference between the maximum currents achievable in single- and 

colliding-beam modes. In this connection we note that at PETRA,5 
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as of 1980, 20 mA of electrons could be stored in single-beam 

operation at about 7 GeV, but only up to about 5 mA per beam could 

be maintained at the same energy in'colliding mode. 

III. THEORETICAL TRENDS 

This concludes our discussion of the experimental situation. 

I now describe some of the main themes in current theoretical work. 

This is not meant to be a comprehensive review (see References I, 

II, and 34). I want simply to give you a feeling for what seem to 

me to be the~more ambitious recent efforts. 

The focus will be on three general (and overlapping) areas: 

computer simulation, models with reduced numbers of degrees of 

freedom, and instabilities ~of single-particle motion. 

COMPUTER SIMULATIONS 

Three computer analyses, numeral simulations of CESR, PETRA, 

and SPEAR, have attracted particular attention in the last year. 

The CESR analysis simulated strong-strong operation. Motion 

was fully three-dimensional. Radiation damping and quantum noise 

were taken into account. The published report 22 includes a figure 

showing a computer-generated curve of luminosity vs. current (at an 

unspecified tune and energy), superimposed on a scatter of data 

points from real machine operation. This graph is reproduced here 

as Fig. 14; the agreement between simulation and experiment is 
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encouraging. The simulation also produced a value for maximum 

storable colliding current that comes within about 10% of an 

experimentally observed value. 

The PETRA analysis simulated both strong-strong and weak- 

strong operation. As in the Cornell study, three degrees of 

freedom, radiation damping, and quantum noise were included. In 

addition, some effects of machine imperfection and finite bunch 

length were taken into account. In the published reports, 23 most 

of the simulation results are presented in graphs of beam heights 

vs. time (t=O is the onset of collisions), and of large-time 

steady-state beam heights vs. betatron tunes, for different values 

of energy, tuneshifts, machine imperfection parameters, etc. The 

accompanying texts contain the suggestion that machine 

imperfections are the major cause of beam blow-up. These reports 

claim good agreement between some of the computer results and 

measurements made directly on PETRA. Unfortunately, very little 

real storage ring data is actually shown, so a reader cannot 

evaluate the agreement for himself. 

The computer analysis of SPEAR24 simulated weak-strong opera- 

tion, and was simplified in that longitudinal oscillations and 

energy oscillations were neglected. The novel aspect of the work 

was the use of the x and y damping and fluctuation strengths as 

variable parameters. The results appear to indicate that vertical 

beam blow-up is driven primarily by horizontal damping and quantum 

noise, and is largely insensitive to vertical noise. Spurred by 

this observation, Tennyson 25 has attempted to formulate an 
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intuitive picture of beam blow-up based on the notion of "resonance 

streaming." (No comparable heuristic ideas have yet developed from 

the other storage ring computer simulations.) Since resonance 

streaming is to be discussed in Tennyson's contribution to this 

summer school, it will not be considered further here. 

When personally assessing the importance of computer 

simulation - as compared with analytical work - the reader ought 

to bear in mind first that those who actually program and 

interpret simulations do not all seem to agree on what is "at the 

bottom" of colliding-beam effects in real machines. Second, 

successes of electron-positron computer simulations do not ipso 

facto ensure comparable successes in the proton-antiproton or 

proton-proton cases. The amount of computer time required for a 

simulation grows with the number of storage-ring turns to be 

simulated; a meaningful study models at least the number of 

revolutions in a radiation damping time. For electrons in CESR, 

this number 3 is about 10 . For protons in existing or foreseeable 

high-energy machines, this number is larger by several orders of 

magnitude. 

Problem 7 

Compute the number of machine revolutions in the radiation 

damping time of a proton in the CERN SPS; in the Fermilab Main Ring; 

in the Tevatron, presently under construction at Fermilab. (See 

Ref. 32 for relevant specifications.) 
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MODELS WITH FEW DEGREES OF FREEDOM 

Many analytical investigations of colliding beam effects have 

concentrated on simplified model systems having fewer than three 

degrees of freedom per particle. 

The one-dimensional model involves motion only in the vertical 

coordinate. Such a simplification is justified to the extent that 

one can: neglect finite bunch lengths; neglect xy coupling in the 

magnetic lattice; and take 
* 

Ox ' for either beam, to be so much 

larger than a * 
Y 

that in the integral of the impulse (5) over the 

beam distribution, one need retain only the leading order in l/ax*, 

i.e. 

* 

2r N 
AY' r-+ 

s 

y/ay 2 
equ '2d~,Ayz 0 

ax y 0 

(14a) 

Ax'=O=Ax, (14b) 

which clearly does not couple x and y. In the one-dimensional 

model, the development of y and y' upon transit of an electron 

through one machine period is described by the functional 

composition of (14a) with the linear transformation corresponding 

to the first of the two matrix factors in (10). The importance of 

SY' compared to cx, in the conventional approach to estimates of 

anticipated maximum luminosity is based on the approximations 

underlying the one-dimensional model. 

The one-and-one-half dimensional models are refinements of the 

one-dimensional model. They were introduced in order to study the 
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effect of synchrotron oscillations on the stability of motion in 

the vertical coordinate. They differ from the one-dimensional case 

in the appearance of explicit time-dependence in the transformation 

that describes the development of y and y' upon transit through a 

machine period. The explicit time dependence is typically 

periodic, at the synchrotron frequency. (The time parameter must 

of course be limited to those discrete values at which the beam- 

beam collisions actually take place; i.e. to { nto + 6}, where n is 

an unrestricted integer, to is the time required for a beam 

particle to travel between interaction points, and 6 is an 

arbitrary but fixed offset.) 

Problem 8 

In positing the kind of explicit, steady time-dependence that 

is customary in such models, one tacitly assumes that all 

particles in a given bunch undergo uninterrupted harmonic 

synchrotron oscillations, all with the same amplitude, all in 

phase. This can be, at best, a tentative working hypothesis 

because there are too many particles in a bunch to be correlated 

in this way, because the synchrotron oscillations can have an 

anharmonic component, and because the synchrotron oscillation of 

even a single particle is subject to frequent random disturbance 

by photon emission. Estimate, for a typical particle in 

single-beam operation of PEP, the times required for random photon 

emission to substantially change the amplitude and phase of linear 

synchrotron oscillation; do the same for horizontal and vertical 

betatron oscillation. (Phase and amplitude decorrelations due to 

nonlinearities are harder to estimate, although they may be more 
27 important. ) Presumably, any one-and-one-half-dimensional 
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instability that develops slowly compared with such a 

decorrelation time is of a priori questionable importance in a 

real storage ring. 

Three forms of time-dependence are most frequently discussed; 

1) Energy oscillations of the transverse coordinates are modeled 

by making the replacement 

y + y + asin gt (15) 

in the right-hand-side of (14a). nis the synchrotron frequency; a 

is proportional to the vertical dispersion (ny*) at the interaction 

point. The relevence of this substitution is debatable, as reports 

often claim n Y : 0. 

2) Energy oscillations of the tune are modeled by making the 

replacement 

PY * -4 
+ mysinat (16) 

in the factor that corresponds to magnet transport in the right- 

hand-side of (10). The amplitude m 
Y is proportional to the 

chromaticity. 

3) Finite bunch lengths are modeled by making the decompositions 

* 
-*+b By = By Y 

sinfit 

(17a) 

6x* = ;,* + bx sinfit 
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(and therefore 

* 
-*+b 

aY = BY Y 
sinnt 

* 
ax = Bx* + bx 

(17b) 

in the right-hand-side of (14a), and in the first matrix factor in 

(10). The amplitudes b are determined by the extent to which the 6- 

functions near the interaction points vary over a scale set by the 

bunch length. At SPEAR, such variations can reportedly be 

appreciable.27 

Problem 9 

As is well-known, 2 the beta functions in an interaction region 

obey 

8 B* x,y= x,y cl+ w;,y)2), (18) 

where s is distance, measured along the beam pipe, from the 

intersection point of the e' and e- synchronous design orbits. 

Using (18) and the parameter values in Table I, compare B, and9 at 
Y 

s = 0 with 9 x and 8y at s = one bunch length, for PEP. 

Problem 10 

For certain parameter values, a one-and-one-half dimensional 

model can be reduced to a one dimensional model by a change of 
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variables. Since the typical one dimensional model is thought to 

be more stable than the typical one-and-one-half-dimensional model 

(see below), it may be desirable to build machines that can be 

operated in such exceptional configurations. 28 Consider, for 

example, the type-3 one-and-one-half-dimensional model of an 

imaginary storage ring whose horizontal and vertical B-functions 

are identically equal. Show that the transformation describing 

transit of an electron through one period of this machine, in this 

model, loses its explicit time dependence when expressed as a 

transformation on f sy/By P and y" s y' rather than on y and 

Y'. 

INSTABILITY STUDIES 

A number of authors26P2gr30P31 have performed numerical and 

analytical studies of the long-time stability of single-particle 

motion in one- and one-half-dimensional models. These analyses 

all neglect damping and noise. In mathematical terms, they are 

concerned only with maps of (y,y')-space formed by iterating, over 

and over, the single-machine-period transformations. For a number 

of years, efforts have been underway to determine what relations, 

if any, exist between the results of such stability analyses and 

the observed behavior of real e+e- storage rings. 

Studies of the one-dimensional model have revealed that for 

sy @ro@y less than a critical value near .25, 

all orbits in space are bounded. An orbit is a 



-28- 

sequence of points in phase space, each related to the one before it 

by an application of the single-period transformation. (In the 

one-and-one-half-dimensional case, the time parameter in each 

application of the transformation exceeds that in the preceeding 

application by the time required for a beam particle to travel 

between interaction points.) For tu significantly less than the 

critical value, the typical orbit appears to the eye to lie on a 

closed curve, approximated well by an ellipse 

2 
B* + (Y' ) 2Py* = constant. 

Y 
. 

(The left-hand-side of (19) is just the Courant-Snyder invariant 

for the linear system obtained by setting N=O.) For 5, just below 

the critical value, there are orbits that appear to the eye to 

densely fill two-dimensional regions of the phase plane. The 

dynamics in such a region are highly unstable, in the sense that no 

two orbits that momentarily approach one another there can stay 

close indefinitely. For g greater than the critical value, one of 

these regions contains both the origin and points with arbitrarily 

large y or y' - so that most orbits that begin near the origin are 

unbounded. 

One would have liked to identify this critical 5 
Y 

with the 

maximum tuneshifts observed in electron-positron colliders, 

although as yet there is no solid theoretical justification for 

doing so; in any case, .25 is too large. In this regard, the one- 

and-one-half-dimensional models are more appealing. There are one- 

and-one-half-dimensional models exhibiting the same type of 
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stability-to-instability transition, but at values of < 5' 
(i.e. 

.(, averaged over a modulation period) considerably smaller than the 

one-dimensional critical value. 

OUTLOOK 

At present, it is hard to designate any one theoretical 

program as the most promising. The criterion should be agreement 

with experiment. So far, only the largest numerical simulations 

have produced results that can be meaningfully compared with 

experimental observations. Analytical theory remains primitive. 
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TABLE I 

Selected PEP Design Parameters 

(for use in doing the exercises, 

from Ref. 18) 

f = 136 kHz 

E = mc2y = 15 GeV 

B =lor 3 

ax* = 3.7 m 
* 

BY = 0.2 m 
* 

OX = 1.1 mm 
* 

uy = .06 mm 

vx = 18.77 

VY = 19.26 

'B 
= 0.2 msec 

T = 4.1 msec E 
bunch length = 4 cm 

n = .4 radian/revolution 

Sy-max = .06 (but use more realistic .02 in the 

exercises) 

K = xy linear coupling = .27 

a = momentum compaction factor = .004 
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Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. a: 

Fig. 9: 

Fig.10: 

Fig. 11: 

Fig.12: 
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FIGURE CAPTIONS 

Luminosity vs. current per beam at SPEAR, from Ref. 3. 

Luminosity vs. current per beam at CESR, from Ref. 4. 

Specific luminosity vs. single-bunch current at PETRA, 

from Ref. 5. 

Luminosity vs. single-bunch current at PEP, from Ref. 

6. 

Luminosity vs. single-bunch current at PEP, from Ref. 

6. 

Television photographs of beam cross-sections at SPEAR, 

from Ref. 9. 

Transverse beam distributions at SPEAR, from Ref. 9. 

Television photographs of beam cross-sections at PETRA, 

from Ref. 11. 

Beam heights vs. time at PETRA, from Ref. 5. 

Transverse beam distributions at ADONE, from Ref. 12. 

Transverse beam shapes vs. fractional part of vertical 

tune at DCI, from Fig. 13. 

Square of beam height, normalized to 9 , vs. current per Y 
beam at SPEAR. Solid points derived from luminosity 

data; open points derived from lifetime measurements. 

From Ref. 3. 

Maximum vertical tuneshift vs. energy at SPEAR, from 

Ref. 3. 

Fig.14: Luminosity vs. current at CESR, according to numerical 
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simulation (solid curve) and experimental observation 

(open dots), from Ref. 22. 
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